
Research Notes

ARM & HAMMER

In-vitro assay confirms ability of CELMANAX to bind harmful bacteria

 $CELMANAX^{m}$ Refined Functional Carbohydrates^m (RFC^m) is a multicomponent, all-natural feed supplement that has Generally Recognized as Safe (GRAS) status as a feed ingredient.

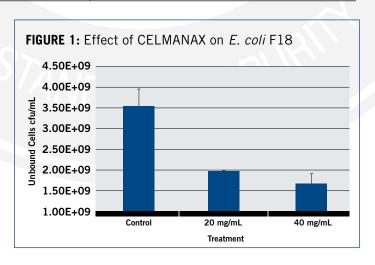
STUDY OVERVIEW

This study was designed to test the ability of CELMANAX to bind *E. coli* and *Salmonella* sp. *in vitro* using a quantitative assay. Since yeast mannans have been reported to bind certain bacteria, the study also compared the correlation between mannan content and binding ability of competitive yeast products.

Experiment 1^1 – Quantitative assay for binding ability:

- 1.0 mL of overnight grown cell culture was centrifuged and pellet was resuspended in either sterile saline (control) or in 20 or 40 mg/mL of CELMANAX*
- The tubes were left undisturbed for 30 minutes to allow bound cells to settle
- Unbound cells were removed from the solution and plated
- The assay was conducted in quadruplet and standard deviation was calculated

Experiment 2 – Quantitative assay for binding ability and mannan content:


- A competitive analysis was conducted to compare binding capabilities of CELMANAX SCP* and A-MAX Ultra™ against competitive yeast products using recommended feeding rates (Bio-Mos®, OmniGen-AF®, Diamond V® XPC and Nutritek®).
- Mannan content of all tested products was determined using an enzymatic assay

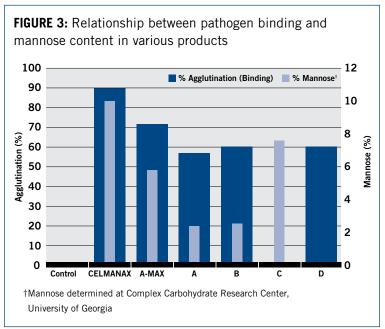
PRODUCT	RECOMMENDED FEEDING RATE FROM PRODUCT SHEET, g/hd/d	PROPOSED QUANTITATIVE AGGLUTINATION CONCENTRATION IN ASSAY, mg/mL**
CELMANAX SCP	3	4
A-MAX Ultra	14	20
Product A	14	20
Product B	19	27
Product C	2 or 4	10
Product D	56	80

RESULTS

Experiment 1:

- Light green clumps of bound cells were observed in the binding test when E. coli and different concentrations of CELMANAX were mixed.
- CELMANAX at 20 and 40 mg/mL bound 47% and 53% of *E. coli* F18, respectively (Fig. 1).

- Binding was also demonstrated when Salmonella cells were mixed with 20 and 40 mg/mL of CELMANAX™ (Fig. 2).
- CELMANAX at 40 mg/mL bound different Salmonella species by 80 – 98% (Fig. 2).


Experiment 2:

- Percentages of successfully bound bacteria were analyzed and compared.
 CELMANAX SCP had the highest rate of binding at 90% (Fig. 3).
- Mannan content had little relationship to binding ability.

CONCLUSIONS

- CELMANAX bound
 enteropathogenic bacteria like
 E. coli and Salmonella in vitro.
 This interaction could potentially
 prevent infections by these
 bacteria by binding them and
 preventing them from binding
 to the host tissue.
- Although mannans and mannan-oligosaccharide (MOS) are associated with agglutination, the amount of mannans or MOS within a product does not always correlate with the degree of agglutination.

- * CELMANAX and CELMANAX SCP contain different concentrations of the same active ingredients. The feeding rates are, therefore, different but deliver the same quantity of active ingredients per recommended dose.
- ** Quantitative agglutination is the actual amount of bacteria bound by the different products. Products were used at 2x the qualitative concentration to assure meaningful quantitative assay values.
- 1 Jalukar S, Oppy J, Holt M. In-vitro assay to evaluate ability of enzymatically hydrolyzed yeast containing MOS to bind enteropathogenic bacteria. Presented as an abstract at the Midwest Animal Science Meeting, Des Moines, Iowa, March 2009, Abstract #228. Research Bulletin 31 and Research Bulletin 39.

